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1. Introduction to Global Optimisation: 

 

Traditionally, large body of research in optimization has focused primarily on 

“convex” optimization problems that have essentially unique global optimum.  

 

However, in the total space of optimization problems, vast majority of situations 

fall outside this well understood category. Problems with multiple, global 

minima, isolated from each other, (but obviously of equal value) are quite 

common. They naturally lead to a number of different types of questions, relating 

to “direct” problems, “inverse” problems and mixed problems, as described 

below: 

 

a) Finding Optimal Solution:  Given a function – which we will refer to as 

“energy” function – find the minima.  

 

 This means finding the minimum value as well as locations. 

 

 

b) Proving Optimality:  Given one such solution, how does one prove that 

there is no better solution?  (without enumerating them all)  What types of 

proofs are possible? How long such proofs might be? How do different global 

minima relate to each other?  

 

To take an example from logic, suppose we take a random 3-SAT formula 

with small number of variables and appropriate number of clauses, it can 

easily have millions of satisfying solutions, but if we take just a random 

collection of million proposed assignments over the same number of 

variables, can they be precisely the satisfying assignments of any 3-SAT 

problem with same number of  clauses? The point is that although the number 

of solutions is large, they are highly co-related. Similarly, when a continuous 

optimization problem has a large number of global minima, they are co-

related with each other.  
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In the context of non-satisfiable formula, are there proofs of non-satifiability 

that don’t enumerate a large number of “partial” assignments? 

 

c) Inverse Problem:  If we know all (or many) global minima, how can we find 

the energy function? This is like “reverse engineering” the nature. 

 

d) Synthesis: If we are given a specification of desired global minima in terms 

of their value, locations or shape of energy landscape, how do we design a 

system with appropriate energy function, possibly subject to further 

constraints? This is a mixture of “direct” and “inverse” problems in the same 

context. 

 

Needless to say, all these questions are deeply inter-related to each other and also 

to how systems occurring in nature behave or how artificially engineered systems 

might be designed. 
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2. Optimisation in Physical Systems: 

 

Nature solves optimization problems all the time, since laws of nature are nothing 

but optimality conditions. They are often expressed in terms of minimum energy 

principle. 

 

In path integral formulation of quantum mechanics, one imagines all possible 

histories or paths leading to a given state, happening in a massively parallel 

fashion. This includes even possibilities forbidden classically, called “tunneling”. 

  

Most of these parallel possibilities interfere destructively due to complex phase 

associated with the action – only paths close to minimum of the action integral 

interfere constructively to add up to appreciable probability. 

 

However, the minimum may not be unique; there can be multiple isolated global 

optima.  

 

Let us take a simple example of field emission from a graphen molecule. 

Application of electric field induces electrons to tunnel out. While the          

Fowler–Nordheim theory [Ref #] assumes a one dimensional barrier that is “flat” 

in the other two dimensions, actual situation in this example is more complex and 

the probability of tunneling as a function of angle has six distinct global minima 

of equal value. This has been observed experimentally by many researchers [Ref 

#] 

 

Here is a simple device to exploit this for communicating information with high 

data rate; which using a carbon nanotube instead of grapheme, but field emission 

takes place essentially from the tip again with similar symmetric pattern.  
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                                 Top view 

 

 

Figure 1 & 2          

 

The electrodes at the top surface serve two functions: 

 

a. To apply electric field to increase tunneling probability and induce field 

emission from the tip of the carbon nano-tube. 
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b. By applying different voltages to electrodes as “tie-breaker”, we can disturb 

the six-fold symmetry so that the action integral along one of the six 

stationary paths wins. In this way, the field emitted electrons can be used to 

encode one out of six possibilities. 

 

As the tunneling time itself is very small (femtoseconds), the bit rate is limited by 

other factors – how fast you can change the electrode voltages. If one applies a. c. 

signal to a pair of antipodal electrodes to encode one out of three possibilities, one 

can go to much higher frequencies. For example one can use surface plasmons to 

deliver the control signal to alter tunneling probabilities. 

 

The encoding then induces oscillations in the pattern of emitted electrons in one 

of the three planes as shown below: 

 

 

 

 

 

 

 

Figure 3 

 

This is just one communication channel, later we will show how to use such 

channels in a massively parallel manner and reconfigure them at high speeds 

using the perfect patterns from projective geometry. 

 

As we have seen, the variational problem associated with the path integral can 

have number of distinct isolated minima and the number can grow rapidly in case 

of multi-particle problem. Nature has its own way of dealing with such 

combinatorial complexity. 
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We have been developing a fresh approach to understanding optimization 

problems with multiple global minima and made progress on all types of 

questions mentioned before – finding, proving, reverse engineering etc. But even 

before we have answers to these problems that we would regard as satisfactory, 

the insights gained are already turning out to be valuable to a number of new 

designs of tremendous economic value.  

 

These include: 

 

  

a. Physical design of the projective geometry machine using massively parallel 

quantum tunneling that can totally overcome obstacles of latency and 

bandwidth faced by contemporary designs. The new design can broaden the  

applicability of massive multi-threading to large and very general classes of 

computational problems, and can be implemented using already known 

fabrication techniques. 

 

b. Design of multi-ported, low latency, secondary storage based on        

magneto-optics, implementing shared memory directly at the physical level, 

providing a highly valuable feature for data bases and transactional memory. 

 

c. Design of new high bandwidth switches required for next generation internet 

infrastructure. 

 

d. Design of novel robots with large number of “electro-magnetic fingers” for 

placing atoms based on complex and sparse patterns of multiple global 

minima that are more general than regular periodic patterns achieved before 

using interference lithography.[Ref #] 

 

e. Design of control systems whose stability analysis requires liapunov-like 

functions with multiple basins of attraction. 
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f. Design of phased-array radars in terahertz range. 

g. Computational calibration of parameters occurring in empirical force fields, 

whose values may be difficult to measure experimentally but can be reverse 

engineered from known structure of folded proteins. 

 

 

3. Multiple Global Minima in Engineered Systems: 

 

   3.1    Difficulties associated with Multiple Global Minima: 

 

There are a number of reasons why optimization problems with multiple global 

minima are so difficult to work with. It was once thought that any algorithms 

working with such problems will have to deal with exponential number of 

connected components. However, we have already shown how to circumvent this 

difficulty. [Contemporary Mathematics v.114] 

 

Even if a level set of such a function is connected, it may be topologically very 

complex e.g. even in 3-D it may have high genus. We have shown such a body 

with many “handles” in the figure below: 

 

 

                                          Figure 4 :       Level set with many handles 
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Sculpturing Free Space: 

 

We are going to partition free space into objects like this; they play an important 

role in synthesizing systems with multiple global minima. 

 

In many naturally occurring systems of this type, there is also a symmetry group 

relating basins of attraction of different minima. 

 

e.g. one can partition space between two concentric spheres; based on elements of 

discrete subgroup of  SO(3). 

             

            Systems based on Electron Optics: 

            Similar to variational problems associated with path integrals in quantum  

            mechanics, there are action integrals in optics, control theory, electron optics, etc.  

            In this paper we will give examples of problems arising in electron optics. 

 

Electron optics is more complex and offers a rich set of possibilities for new  

devices for several reasons: 

 

a. It is possible to create curved trajectories relatively easily by setting up 

appropriate electromagnetic fields. 

 

b. It is relatively easier to interface them to logic circuits in both directions. 

 

c. Electron holography permits exploitation of wave nature of electrons.   

 

d. Motion of electrons in vacuum is free from collisions. Unlike traditional 

high-power micro-wave devices, we are interested in ultra-low current and 

very high performance per watt. Therefore electron density in space is 

very low and space charge effects can be ignored. In fact, as single-
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electron transistors become practical they can be used to control field-

emission of one electron at a time.  

 

Traditionally, electron optical instruments have been dominated by the 

concept of “central optical axis” in the same way that optimization theory 

is built around convex problems with unique global optimum. Electrons 

are required to stay close to central optical axis so that it is easy to analyze 

and control their behavior. However, once we understand how to deal with 

optimization problems with multiple global minima, similar insight helps 

in designing electron optical systems without any dominant central axis.  

 

Electron trajectories in these more general systems can be typically related 

by double equivalence relations: 

 

a) First equivalence relation comes about as a result of lensing action: 

 

Two electron trajectories  )(0 t  and  )(1 t , going through the same 

point x, with the same kinetic energy, but traveling in different 

directions, and  converging again in a common  point y, are considered 

to be equivalent under lensing action if you can interpolate between 

the two trajectories by family of trajectories f (s,t) indexed by 

parameter s, all going through the same point x at (t = 0),  with same 

kinetic energy but in different directions and meet again at the 

common point y. This is similar to homotopy relation in differential 

topology, but with the extra requirement that the electromagnetic fields 

needed to induce the interpolating electron trajectories are obtainable 

in source-free vacuum only through application of appropriate 

boundary conditions 
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 Trajectory Equivalence based on Lensing Action 

    Figure 6 

 

 

The class of trajectories under this equivalence relation belongs to the 

same partition or fundamental domain of free space. 

 

The second equivalence relation relates different fundamental regions 

by action of a discrete symmetry group. The action of group elements 

is also defined on individual electron trajectories to give other valid 

trajectories. Since the partitioned vacuum through which electron 

move is itself source-free, we achieve the desired symmetry by 

expressing the sources on the boundary in terms “symmetrised” multi-

poles.  For implementing the finite projective geometry architecture, 

the symmetry group is chosen as an appropriate sub-group of the 

automorphism group of projective geometry. Groups corresponding to 

                
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other Cayley graphs can also be chosen, but there are many further 

advantages to organizing the parallel machine using projective 

geometry. 

 

For sculpturing the vacuum as described above, we have to solve a 

new type of boundary value problem. In the usual type of boundary 

value problem, values of the field on the surface, bounding certain 

volume are specified and we seek extension of field values to the 

entire volume subject to satisfying some differential equation. 

 

In the new type of problem we need to solve, a partition of the 

boundary is specified instead of field values on the boundary. This 

may be done in a variety of ways, e.g. it may be in the form of a 

voronoi diagram or a generalized voronoi diagram based on non-

euclidian metric, or based on level sets of a function or partition based 

on fundamental domains corresponding to a symmetry group or 

“tiling” of the surface.  

 

We then seek an extension of the boundary partition to a partition of 

entire bounded volume, which then gets divided into tubes. Electrons 

move through these tubes so that probability of tunneling in transverse 

direction between adjacent tubes is negligible compared to tunneling 

in the longitudinal direction at the end of the tubes. Such division of 

space is a “soft” partition corresponding to a “perfect pattern” based 

on the projective geometry [ref. #] and can be easily and rapidly 

changed or reconfigured simply by changing the boundary conditions. 

 

We describe the physical design of a parallel system based on these 

ideas in the next section and the projective geometry ideas in the 

following section.  
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4. Electromagnetic Cavity Machine: 
 

The central core of this parallel system can be best described as an 

Electromagnetic Cavity of a very special kind. 

 

The surface of this cavity is lined with active logic circuits fabricated with certain 

modest extension of the current VLSI technology, which is basically a planar 

process. In the immediate future, this can be based on silicon and might be 

changed to other possibilities such as graphene in the long run. At the top level, 

these logic circuits may be organized as millions of ultra low power cores 

designed to enable massive multithreading. A peta-flop configuration requires 

only about a square meter of silicon real estate for computing circuits even if they 

are designed to run at slower clock speed to significantly improve performance 

per watt. Besides computing, the surface circuits also provide for two types of 

communication devices between computing resources. The first type is for the 

traditional 2D nearest neighbor communication.[ref #] The second type provides 

supporting devices for a new type of surface normal communication based on 

massively parallel quantum tunneling and free space electron optics through the 

cavity volume. This type of global communication uses highly symmetric flow 

patterns derived from mathematical structure of finite projective geometry. Its 

implementation involves a novel electron optical system that does not have any 

dominant “central optical axis”. Instead, it is based on action integrals having 

multiple global minima. The electromagnetic fields to guide electrons along the 

required massively parallel trajectories is set up by creating appropriate boundary 

conditions on the surface of the electromagnetic cavity.  The electrodes required 

to apply such boundary conditions are patterned on the surface of the cavity by 

standard lithographic techniques. The drivers, receivers and other controlling 

electronics required for this purpose is located on the surface of the 

electromagnetic cavity. It is fabricated using standard VLSI process. These 

supporting devices for the surface-normal communication are described in section 

-7. 
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The revolutionary bandwidth and latency properties of our parallel architecture 

are resulting from combination of perfect patterns of the projective geometry, 

novel electron optical system and massively parallel surface normal quantum 

tunneling.  

  

Several other novel devices mentioned earlier are also Electromagnetic Cavity 

Machines at a conceptual level. According to the end objective, they differ in 

details such as choice of wavelength or time scales, or what they rearrange - bits 

of material or bits of information. 

 

5. Brief review of projective geometry architecture: 

 

Most large computational problems contain plenty of parallelism “in principle”. 

As a result promise of parallelism has long been recognized. However, in 

practice, the power of parallelism remains grossly under-utilized due to 

programming difficulties. A good architecture and physical design of a parallel 

machine should be able to deliver decent efficiency on a wide variety of 

applications expressed using different programming paradigms.  e.g. it should not 

matter whether the program is written in fortran or lisp or prolog, whether it is 

doing number crunching, symbolic computation or processing relational data-base 

queries etc. 

 

One should also strive to provide support for strong scaling. i.e. one should not be 

required to increase problem size just to show good efficiency with large number 

of processors. Unless we set the goals or criteria for success high enough, it is 

unlikely that we can arrive at good architectural solution. It is with such goals in 

mind that we have devised an architectural scheme based on mathematical 

properties of projective geometry. In this scheme, it is not necessary to depend 

upon hand-crafted decomposition of computational problems into parallel tasks. 

Instead, the hardware has built in rules to automate this to a substantial degree. 
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This emphasis on wider applicability, strong scalability and reduced programming 

complexity more than compensates for moderately higher complexity of our 

physical design. After all, one can manufacture millions of identical copies of 

hardware, once designed. In contrast, each software package involves a long-

drawn evolutionary effort, involving difficult combination of creativity and 

software discipline. This has been the primary reason why power of computer 

science remains grossly under-utilized today. 

 

The configuration of a projective geometry is specified by three integers:   

characteristics of the underlying finite field, p, degree of the extension k, and 

dimension of the geometry, d. We denote the projective geometry corresponding 

these parameters by        

 

 

Let        denote the collection of all projective subspaces of dimension l.  

            Thus, 

: set  of  all  points 

: set  of  all  lines 

:  set  of  all  hyperplanes  etc 

 

  Consider collection of subspaces of dimensions 0, 1, ..dmax. In the projective 

geometry architecture each hardware resource is associated with a subspace and  

  two resources corresponding to subspaces X, Y are connected  

                                      iff      X       Y 

    and dim (X) = dim (Y) -1 

 

 

 

 

 

 

))(( kd pGF

l

0

1

1d


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           Here are some examples of  7, 21, 31, 57, 183 point 2d geometries 

 

 

 

 

 

           7 

 

          21 

 

 



 17 

31 
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Portion of 183 
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The operation of the projective geometry architecture is organized in terms of   

 “perfect patterns” as explained in   [ref. #]  

 

 

Perfect  Access  Pattern  for 2-d Geometry is shown in the following table. 

Let n = number of points = number of lines 

  

  

Point Pairs 

 

Corresponding  lines 

 

1    

2 

. 

. 

. 

n 

 

   

(p1,q1) 

(p2,q2) 

. 

. 

. 

(pn,qn) 

    

l1  =  <p1,q1> 

l2  =  <p2,q2> 

. 

. 

. 

ln  =  <pn,qn> 

 

  Table no 1 

 

A Perfect Access  Pattern is a collection  of N ordered pairs of points s.t.  

1. First members of all pairs (p1, p2, … ,pn) form a permutation of all pts 

2. Second members (q1, q2, … , qn)  also form a permutation. 

3. The lines (l1, l2, …, ln) determined by these pairs form  permutations 

of all lines of the geometry. 

 

Clearly, if one schedules binary operations corresponding to such a set of index – 

pairs for parallel execution 
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1. There are no read – write conflicts in memory accesses. 

2. There is no conflict in processor usage 

3. All processors  are fully utilized 

4. Memory bandwidth is fully utilized 

 

Furthermore, a collection of perfect patterns is   called complete if 

every index – pair  (a,b)   occurs in exactly one pattern 

 

Perfect  Access Patterns  for  4d  Geometry is shown in the following table: 

Let   n  =  number of planes    =   number of lines 

 

 

 Triplet of Points Triplet of lines Planes 

1 

2 

  

n 

(p1,q1,r1) 

(p2,q2,r2) 

  

(pn,qn,rn) 

u1=<p1,q1> 

u2=<p2,q2> 

  

un=<pn,qn> 

v1=<q1,r1> 

v2=<q2,r2> 

  

vn=<qn,rn> 

w1=<r1,p1> 

w2=<r2,p2> 

  

wn=<rn,pn> 

h1=<p1,q1, r1> 

h2=<p2,q2, r2> 

  

hn=<pn,qn,rn > 

 

    Table no 2 

 

A perfect pattern is a collection of n (non-collinear) triples such that 

• Lines u1, u2, …, un determined by first pair of points from each triplet forms a 

permutation of all lines. 

• Similarly, lines determined by pair (qi,ri) form each triplet form a permutation of 

all lines and lines determined by pairs (ri, pi) also form a permutation. 

• Planes h1, h2, …, hn determined by the n triplets form a permutation of all planes 

 

A set of perfect patterns is complete if every non-collinear triplet occurs in 

exactly one perfect pattern 
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Hypothesis graphs: 

 

Organisation of the projective geometry machine in terms of perfect patterns 

allows exploitation of parallism at a fine grain level. To enable this in presence of 

conditional branches, we use a concept of hypothesis graphs, which is a slight 

extension of data flow graphs, augmented with Boolean predicates. A Boolean 

variable associated with a data variable represents validity of the data value. 

Operations in the data flow graph compute Boolean predicates in the same way as 

data operations. When Boolean predicate associated with a node evaluates to 

false, that branch of the computation terminates. No computation is ever rolled 

“back”. 

 

Although this concept was originally meant to help deal with conditional 

branches, it is also turning out be extremely useful for efficient computation and 

simulation under multiple scenarios if they share significant amount of common 

computation. 

 

e.g. you may start the computation by having Boolean variables c1, c2, …,cn, 

where ci represents the condition that price of certain stock is expected to be in the 

interval [ai, bi], or that thickness  t of sheet metal while optimizing design of an 

automobile body is in certain interval  [ai, ai+1]. The initial Boolean variables may 

sometimes persist till the end as symbolic variables or they may get evaluated as a 

consequence some intermediate calculation. 

 

Virtual Memory Organization based on subspaces 

 

Generally, virtual memory is organized in a hierarchical fashion: Total memory 

space is divided into pages. Pages consist of words and words consist of bits.  
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In the projective geometry architecture there are superpages organized in the 

form of lattice. Two superpages are either disjoint or intersect in another 

superpage (or page at the bottommost level). Each superpage is associated with a 

subspace of the projective space, and intersection of two superpages is associated 

with the intersection of corresponding subspaces. Accessing many pages from the 

same superpage can lead to predictive fetching of the entire superpage enabling  

exploitation of another kind of locality that is frequently present in many 

applications. 

  

Disciplined pointers based on memory spaces: 

 

On one hand, pointers enable efficient programs. On the other hand they are also 

source of many programming errors which are difficult to find. In the projective 

geometry based organization, we use a concept of “disciplined pointers”: A 

pointer variable is associated with a memory subspace of the geometry.  It is 

allowed to point only to target addresses belonging to that subspace. This simple 

device reduces programming errors.  

 

Application of group theoretic structure of projective geometry: 

 

 

The symmetries underlying projective geometry play an important role in 

generating perfect patterns as well as their physical implementation.  Generation 

is explained in this section and physical implementation in the following section:  

 

Observe the following relation between  

                            and   GF(s
d+1

)  

            

• GF(s
d+1

) contains a subfield GF(s) 

• GF(s
d+1

) is a vector space over GF(s) of dimension d+1 

Hence, 

dΡ (GF(s))
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• Non-zero elements           one-to-one         Non-zero elements 

    of GF(s
d+1

)               correspondence     of V
d+1

(GF(s)) 

 

Let G = multiplicative group of non-zero elements of GF(s
d+1

) 

      H = subgroup of non-zero elements of GF(s) 

• Cosets of H in G                                  Rays through origin in V
d+1

 (GF(s)) 

• Quotient group G/H                             P
d
(GF(s)) 

 

The group G is cyclic 

Let x = generator i.e. primitive root of GF(s
d+1

) 

 

•  Then G =      1,,,,,1 12  nn xxxx   

  Let     
1

11








s

s
n

d

d  

• H =  ddd nsnn
xxx

)2(2
,,,,1

  

Hence Quotient group G|H can be represented as 

 

• G|H                  

We use this method of labeling point in P
d
(GF(s))  

Represent Points of P
d
(GF(s)) as 

 

 

 

Where n = the number of points. 

• The shift operation is a permutation of points 

1:  ii xxf  

 
j

jj

j

jj yfaya 0)(0  

Thus any linear relation is preserved by this operation. 

 

 

 121, ,..., dn
x, x x



 2 11, ,..., , 1n nx, x x x 
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• It maps 

lines    lines 

planes                           planes 

Any subspace               Another subspace 

Of dimension k                        Of dimension k 

 

Such a mapping is called automorphism of the geometry. 

 

•  Furthermore, in a 2-d geometry, by repeated application shift operation   you can 

move 

                            any point                          any other point 

                            any line                            any other line 

i.e group generated by shift operation is transitive on points and lines in 

P
2
(GF(s)) 

How to generate complete set of perfect patterns for 2d geometry 

• To generate a single perfect pattern, 

Take any pair of points a, b a     b and apply the shift operation repeatedly  

 

•  

•  

•  

•  

•  

 

 

 

 

 

 

 

 

 

 

 

 

1

2

2 2 2 2

3

1 1 1 1

, ,

, ,

, ,

, ,n n n n

n

a b l a b

xa xb l xa xb

x a x b l x a x b

x a x b l x a x b   









 
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To generate a complete set of perfect patters, take any line 

 kaaal ,,, 21 
 

form all 








2

k
 point pairs from l 

shift

aa

shift

aa

shift

aa kk



 ),(),(),( 12121

  

 

Each pair gives a perfect pattern by shifting. Together they give a complete set 

To generate a complete set of perfect patterns in a 4-d geometry, We need more 

than just cyclic shifts. 

 

Other examples of automorphisms 

In a finite field of characteristic p, the operation 

   x → x
 p
 

Is an automorphism of the field. 

i.e    (x+y)
p
 = x

p
 + y

p 

and   (xy)
p
  = x

p
y

p
      for all x,y 

We can construct an automorphism of P
d
(GF(s)), where s = p

k
, 

Using the relationship between 

 and   )( 1dsGF  

        
j j

p

j

p

ijjij xaxa 0)(0  

 

Hence                      subspaces                subspaces 

 

More general Automorphism: 

 

 Let A: any (d + 1) × ( d + 1 ) nonsingular matrix over GF(s)  

Consider the mapping 

 

 x → Ax  For       ))((1 sGFVx d         

This extends to a well-defined map on P
d
 (GF(s)) and gives an automorphism. 

 

dΡ (GF(s))
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Transitivity: 

In any P
d
 (GF(s)), the group of all automorphism acts transitively on all subspaces i.e. 

given any pair of subspaces 

H1 and H2 of same dimension 

There is an automorphism that maps, 

H1 → H2 

 

 

Generation of Perfect Pattern for 4-d Geometry: 

 

• Take any non-collinear triplet (a, b, c) 

• Apply the elements of automorphism group to generate the orbit     

  (a 
(k)

 , b 
(k)

 , c 
(k)

 )  k = 0, 1, 2, …, n-1 

• The orbit is a perfect pattern 

 

To generate a complete set of perfect patterns 

 

• Take any plane H = ( x1, x2, …, xk) 

• Form all non-collinear triplets from points of H 

• Generate a perfect pattern/triplet as its orbit 

 

Together they give a complete set 

 

Further packing of patterns, for concepts such as 

 

• Complete collection 

• K-fold complete collection 

– Each pair is covered exactly k times. 

 

And Perfect Sequences of Pattern, refer to [ref #] 
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6.         Communication based on electron optics through the cavity volume: 
 

We choose a complete set of perfect patterns or a k-fold covering of perfect 

patterns [ref. #]. Corresponding to each perfect pattern, the cavity volume is 

partitioned into fundamental domains. Each fundamental domain contains a 

“tube” in free space for field-emitted electrons. The ends of the tube have field 

emitters and detectors located on the cavity surface. 

 

The electromagnetic field required to propel field-emitted electrons along these 

tubes is created by applying appropriate boundary conditions to the electrodes on 

the cavity surface. We will illustrate this with a simple example of one perfect 

pattern for the smallest 7-point projective geometry. The 2D perfect pattern is 

shown in Fig. 7 below: 
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Example of one perfect pattern for 7 point 2d geometry 
                                    Fig. 7  
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The boundary partitions for processors and memories is shown in Fig.8   : They 

form top and bottom surfaces of the cylindrical cavity in this example. 

 

The building block to be used for space partitioning for this example is shown in 

fig #. The space partition of the cylindrical cavity is shown in Fig. #, the tubes for 

electron flow are shown in Fig. 9 and fig #:  

 

An Example of building block for partitioning free space 
Some curved sides of the building blocks have tangents which correspond 
To same element of lie algebra 
   Fig 

Boundary partition of the top and bottom surface of the cylindrical cavity 
    Fig 
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Example of space partition of the cavity volume 
                      Fig. 10   
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Example of tubes for electron flow 
For the perfect pattern above 

Fig. 11 
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The vertical component of the electron motion is due to electric field and the 

circular component due to magnetic field in the axial direction resulting in overall 

helical motion. Different perfect patterns from a complete collection can be 

achieved simply by changing the magnitude of the magnetic field. The physical 

complexity of connecting n sources to n destinations in one hop using a complete 

set of perfect patterns is O(n). Alternative arrangements that have been used in 

contemporary designs for one hop connections is O(n
2
). 

e.g. The Earth Simulator built in Japan, which is a very good architecture from the 

point of view of generality, uses connections of O(n
2
) physical complexity as 

shown in Fig. 12   below: 

 

 

 

Further refinements of such physical designs have considered replacing electrical 

cables with optical fibers and using dense WDM multiplexing.[ref #] Such 

multiplexing saves optical fibers (which is the cheapest component anyway). The 

total physical complexity of the multiplexers and demultiplexers in the system is 

still O(n
2
), since there are O(n) such components, each of O(n) complexity. 

  

Single hop communication network – complete bipartite graph 
Fig. 12 
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Other methods of reducing interconnect complexity use multiple hops. This 

approach increases latency, and also multiplies energy used per bit communicated 

by the number of hops since each time a bit is received, detected, amplified and 

retransmitted, additional energy is consumed. 

 

In contrast, our design provides low latency, single hop communication channels 

which can be reconfigured electromagnetically and the physical complexity of the 

overall design is O(n). 

 

Now we show another way of lining the (approximate) cylindrical cavity. Instead 

of cylindrical shape, the surface is actually polygonal with many sides. The logic 

circuits are arranged in a two dimensional pattern. In the figure below we show 

electron trajectories connecting sources and destination lying on the same vertical 

line, i.e. they have same angular co-ordinates and each electron trajectory is in 

meridional plane. In this configuration the magnetic field is only in φ -direction 

(set up by current along central axis) of the cylinder. It is possible to combine this 

with helical motion as well. 

 

  

     Figure no 
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There are even simpler geometries possible which are more suitable for single 

chip or single wafer systems. 

         

Single chip / Wafer Implementation 

Figure 

 

                                                                            

In this configuration, an electrode parallel to the wafer surface acts as an “electron 

mirror”, and emitted electrons are deflected downwards before reaching the top 

electrode. The deflection electrodes surrounding each emitter control initial 

direction of launching and thereby select the destination to be reached.  Such a 

design is compact enough to be incorporated in a many core desktop 

supercomputer. 

 

 

7. Electromagnetic Cavity Machine- Surface devices 

 

Logic circuits and 2D nearest neighbor communication circuits on the surface of 

the electromagnetic cavity are standard VLSI devices. The novel devices are for 

3D surface normal communication. These consist of arrays of field emitters, 

detectors, electrodes for extracting, accelerating, modulating, screening, focusing, 

deflecting and decelerating field-emitted electrons. Before detection, electrons are 
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decelerated to promote “soft landing”, thereby reducing some of damage caused 

by impact commonly encountered in field emission displays. During deceleration, 

electrons also return some of energy gained during acceleration, reducing energy 

dissipation/bit communicated.  

 

There are control circuits for controlling threshold of the onset of field emission, 

as well as current limiting control circuits to avoid excessive emission. The 

emitters can be put through different types of cycles or modes – initial start-up 

mode to clean emitter tips of adsorbed molecules, regular operation mode and 

periodic “refresh” mode to restore quality of emitter tips and vacuum.  

  

The control for deflection electrodes have two modes differing in time-scales. A 

slow time constant mode is used for adaptive alignment to compensate for any 

mechanical misalignment during manufacture or any slowly developing 

deformation of the cavity due to factors such as slight temperature non-

uniformities or structural warping. The fast mode is used for realizing various 

symmetric communication patterns at run time. Ability to do such finer 

adjustments or adaptation by fully electronic means is a major practical advantage 

of electron optics over free-spaces (photon) optics. 

 

For fabricating arrays of field-emission devices, a large number of different 

approaches have been extensively explored internationally. These include shottky 

barriers,  spindt cathodes made from circular molybdenum cones, sharp pyramidal 

silicon tips exploiting differential etching rates along different crystal planes, 

optionally coated with thin films of materials like DLC (diamond like carbon) 

having negative electron affinity. Arrays of carbon nano-tubes, in particular 

sparse arrays of single walled CNTs, precisely patterned by means of arrays of 

dots of Ni or other catalysts seem very promising. For communicating 64-bit 

words, it is possible to make larger arrays to provide for error correction bits, 

redundancy to compensate for other types of failure during manufacturing etc. 
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Unlike optoelectronic devices in the infra-red range, whose packing density is 

order of magnitude worse than current logic circuits, due to diffraction limit, field 

emission devices for surface normal communication can be packed with much 

higher density. In our design, both logic circuits and communication devices on 

the cavity surface will be ultimately based on quantum tunneling, in tangential 

and normal directions respectively, and both can be operated as single electron 

devices. 


