How green will be my valley?

(This is a guest blog by Chaitanya Rajguru, Associate Technical Fellow at KPIT Cummins, and a member of the PuneChips group.)

The integrated circuit from an Intel 8742, a 8...
Image via Wikipedia

The “greening” of all things commercial and industrial is all around us. Every industry from transportation to technology to power to finance is in a rush to be perceived as “green”. So should the EDA industry stay behind? I think not. And here are my thoughts on some possible scenarios on what may happen.

So where does one begin? One good starting point may be with a popular indicator used to gauge the “goodness” of EDA tool’s output: “Quality of Results”, or QoR. QoR is used as a higher-level indicator of process quality, much like a Customer Satisfaction Index that up-levels feedback on specific aspects such as timely delivery and responsiveness. IC design EDA tools have used to showcase what they can do. So is it possible to expand its scope to include “greenness” as well? Or is it just an attempt to paint a turkey blue and pass it off as a peacock?

QoR is one of the long-lived and often-used keywords in Silicon Valley – surely on par with “information superhighway” in sheer citation count. Yet the latter phrase isn’t heard much anymore. It just reminds us of the 90’s internet boom, and doesn’t convey anything that is new today. After all, this superhighway is now as much part of our lives as electric power distribution is, and it has been a while since either created much excitement. And so is “QoR” similarly frozen in time as well, not staying up-to-date with today’s design challenges?

Let us take a quick look at how QoR has evolved over time. In the early days of IC design, the biggest challenge was to pack as many transistors onto a single die as possible. The self-fulfilling prophecy of Moore’s Law had setup expectations that somehow had to be met! And while the accompanying frequency spiral required lots of efforts to maintain, it was achievable. Thus the QoR directly reflected “transistor count” and “frequency” as the most important indicators of EDA tool capability. Other variations appeared, such as the packing density of logic and analog circuitry.

“Power” then appeared on the QoR scene, as limits of battery power and even socket power were approached by systems. Now EDA vendors could speak the language of the system architects with their “power-performance-area” optimization triangle. Higher-level performance metrics such as MIPS and FLOPS entered. Then came combinations such as “MIPS per megahertz per watt.” Thus the QoR definition expanded from the “micro” qualities to encompass the “macro”: from frequency and packing density to power and performance.

Looking at current trends in the economy, “Going Green” has taken on big importance everywhere. It is the socio-politically correct thing to do, regardless of your product or service. Companies with physical products joined the bandwagon early: building architects, automobile manufacturers, consumer electronics OEMs, and IC manufacturers. One software company that has made a start is Google, with its goal to “minimize its carbon footprint.” Other companies have been slower to adapt – maybe due to having “soft products,” or maybe because they find it hard to make the right connection into this trend. But the semiconductor industry and the EDA industry are inevitably subject to the same greening trend, and can not convincingly “opt out.”

But “Being Green” is as high-level a quality metric for an EDA product as any – so much so, that whether it even applies to EDA tools is sure to be hotly debated. Yet suppose, for a moment, that it were to be made a part of QoR, how do you think it can be done?

Initial thoughts that come to my mind suggest getting a “Green Process” certification for the EDA tool development cycle, analogous to the ISO9001 or CMMI certifications. In the future, such certifications could surely be applicable to any business or organization (maybe even an individual!), and the EDA industry would be no exception. Another possibility is to publish a “carbon footprint” or “carbon neutrality indicator.”

But the above “green indicators” apply only to the development of the EDA tools, and give no satisfactory indication of whether their use will lead to “green products”. My best suggestion so far to gauge that quality is to measure the tool performance (the fewer compute cycles it burns, the better) and its reuse (the more, the better). Reuse can be in terms of reusing the building blocks (within a project), the output (across projects) and even the hardware utilization (e.g. exploiting multicore architectures). I believe these quality measures will anyway be applied to the evaluation of EDA tools, because they also affect development cost and schedule. So one might as well explicitly go after these indicators and kill two birds in one stone!

On the downside of a green QoR, we could be chasing a red herring. Isn’t it be better to focus on the core job of the EDA tool, which is to make the design task easier? To what extent do we go in order to conform to this latest fad? And how about degrees of greenness, and who measures those? If two tool vendors claim to be green, how do I verify their claims and compare them against each-other?

So, what do you think about the “Greening of QoR?” Is it meaningful? If not, why not? And if yes, how can we go about it? It’s always fun to make predictions, so please do share yours …

About the Author – Chaitanya Rajguru

Chaitanya is an Associate Technical Fellow at KPIT Cummins Infosystems Ltd. He has extensive experience in end-to-end development of semiconductor products, from definition to production, with specialization in PC chipset, graphics and Flash memory IC products. He has played various roles such as product development lead, technical expert, people manager and organizational development facilitator.

Reblog this post [with Zemanta]